

OLED SPECIFICATION

Model No:

REC001602AYPP5N00001

CUSTOMER:

APPROVED BY	
PCB VERSION	
DATE	

FOR CUSTOMER USE ONLY

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
		1000	

Release DATE:

1. Revision History

VERSION	DATE	REVISED PAGE NO.	Note
0	2010/08/13		First release
Α	2011/07/01		Change version
В	2012/08/28		Correct count drawing Modify CIE Modify picture
C D	2013/12/24 2014/06/16		Update Rev. Add Low Temperature storage.

Contents

- 1.General Specification
- 2. Module Classification Information
- 3.Interface Pin Function
- 4. Counter Drawing & Block Diagram
- 5. Absolute Maximum Ratings
- 6.Electrical Characteristics
- 7. Optical Characteristics
- 8.OLED Lifetime
- 9.Reliability
- 10.Inspection specification
- 11.Precautions in use of OLED Modules

1.General Specification

The Features is described as follow:

■ Module dimension: 80.0 x 36.0 x 10.0 (max.) mm

■ View area: 66.0 x 16.0 mm

Active area: 56.95 x 11.85 mm

■ Number of Characters :16 Characters x 2 Line

Dot size: 0.55 x 0.65 mmDot pitch: 0.60x 0.70 mm

Character size: 2.95 x 5.55 mmCharacter pitch: 3.6 x 6.3 mm

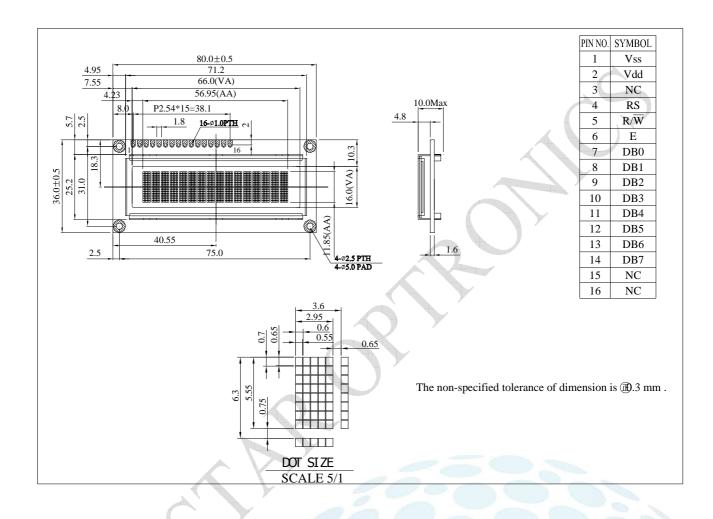
■ Duty: 1/16

■ Emitting Color: OLED ,Yellow

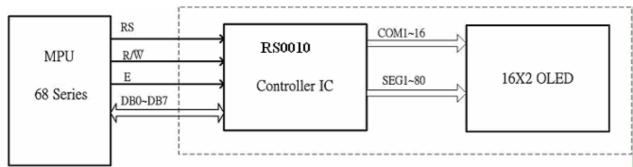
2.Module Coding System

1	2	3	4	5	6	7	8	9	10	11	12	13
R	Е	С	001602	Α	Y	Р	Р	5	N	0	0	001

Item	Description								
1	R: Raystar Optron	ics Inc.							
2	E:OLED								
3	Display Type: C→C	olay Type: C→Character Type, G→Graphic Type,T→TAB Type ,X→COG Type							
4	Number of Characters : 16Characters,02 Lines.								
5	Serials code								
		A: Amber	R: RED						
6	Emitting Color	B: Blue	Y: Yellow						
		G: Green	W : White						
7	Polarizer	P: With Polarizer; N: Without	Polarizer						
8	Display Mode	P: Passive Matrix; A: Active	Matrix						
9	Driver Voltage	3: 3.0 V; 5: 5.0V							
10	Touch Panel	N: Without touch panel; T: W	ith touch panel						
10	Toucht anei	S: Resistive touch panel							
11	Species	0:Normal, 1:Sunlight readable, 2:Transparent, 3:Flexible, 4:Lighting							
12	Grade code								
13	Serial No.	Sales code							



3.Interface Pin Function


Pin No.	Symbol	Level	Description
1	VSS	0V	Ground
2	VDD	5.0V	Supply Voltage for logic
3	NC	_	No Connection
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(Module→MPU) L: Write(MPU→Module)
6	E	H,H→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	NC		No Connection
16	NC		No Connection

4. Counter Drawing & Block Diagram

7	Address Format DE			37	DB6	DE	35	DE	34	DE	33	DB2	DB1	DB0		
CA	CA (Character Address)		1	[<i>[</i>	ADD6	ΑD	D5	AD	D4	ADI	D3	ADD2	ADD1	ADD0		
1	2	3	4		.,	ring)	1	3	1	4	1	5	1	6		
0000	1000	0100	0011				5	100	20	2	1110	2	7	5		

			, 77,	,,.	1,111	, 0			
CA10000000	CA10000001	CA10000010	CA10000011			CA10001100	CA10001101	CA10001110	CA10001111
CA11000000	CA11000001	CA11000010	CA11000011			CA11001100	CA11001101	CA11001110	CA11001111

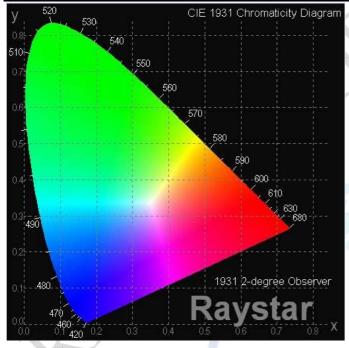
5.Absolute Maximum Ratings

Item	Symbol	Min	Max	Unit	Notes
Operating Temperature	T _{OP}	-40	+80	$^{\circ}$ C	
Storage Temperature	T _{ST}	-40	+80	$^{\circ}$	
Supply Voltage For Logic	VDD-V _{SS}	-0.3	5.3	V	

6.Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	VDD-VSS	_	4.8	5.0	5.3	V
Input High Volt.	VIH	_	0.8 VDD	_	VDD	V
Input Low Volt.	VIL	_	GND	_	0.2 VDD	V
Output High Volt.	VOH	IOH=-0.5mA	0.8 VDD	- (VDD	V
Output Low Volt.	VOL	IOL=0.5mA	GND		0.2 VDD	V
50% Check Board Operating Current	IDD	VDD=5V	24	31	40	mA

Note: In order to avoid any possible damages, 3V or 3.3V logic I/O for VDD 5V OLED module is not recommended.


Page 11, Total 26 Pages

7. Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ		160			deg
l and an angle	(Η)φ		160			deg
Contrast Ratio	CR	Dark	2000:1	4		
Response Time	T rise	_		10		μs
	T fall	_		10		μs
Display with 50% check E	Board Brightness		100	120		cd/m2
CIEx(Yellow)		(CIE1931)	0.45	0.47	0.49	
CIEy(Yellow)	CIEy(Yellow)			0.50	0.52	

Page 12, Total 26 Pages

8.OLED Lifetime

ITEM	Conditions	Min	Тур	Remark
Operating Life Time	Ta=25°C / Initial 50% check Board Typical Brightness Value	80,000 Hrs	100,000 Hrs	Note

Note:

- 1. Life time is defined the amount of time when the luminance has decayed to <50% of the initial value.
- 2. This analysis method uses life data obtained under accelerated conditions to extrapolate an estimated probability density function (*pdf*) for the product under normal use conditions.

Page 13, Total 26 Pages

3. Screen saving mode will extend OLED lifetime.

9.Reliability

Content of Reliability Test

Environmental Test				
Test Item	Content of Test	Test Condition	Applicable Standard	
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80℃ 240hrs	-, (
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-40℃ 240hrs		
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	80℃ 240hrs		
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-40°C 240hrs		
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	60℃,90%RH 240hrs		
Temperature Cycle	Endurance test applying the low and high temperature cycle. -40°C 25°C 80°C 30min 5min 30min 1 cycle	-40°C/80°C 100 cycles		
Mechanical Tes	st			
Vibration test Endurance test applying the vibration during transportation and using.		10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hr	50	
Constructional and mechanical endurance test applying the shock during transportation.		50G Half sin wave 11 ms 3 times of each direction		
Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115mbar 40hrs		
Others				
Static Endurance test applying the electric stress to the terminal.		VS=800V,RS=1.5kΩ CS=100pF 1 time	1.688	

^{***} Supply voltage for OLED system =Operating voltage at 25 $^{\circ}$ C

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability. After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5℃; 55±15% RH.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for High Temperature storage, High Temperature/ Humidity Storage, Temperature Cycle

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within ± 50% of initial value.

APPENDIX:

RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

10.Inspection specification

NO	Item	Criterion			AQL	
01	Electrical Testing	1.1 Missing vertical, horizontal segment, segment contrast defect.1.2 Missing character, dot or icon.				
		1.3 Display malfunction.				
		1.4 No function			necifications	0.65
		1.5 Current consumption exceeds product specifications.1.6 OLED viewing angle defect.				
		1.7 Mixed produ	-			
		1.8 Contrast def	ect.			
02	Dlook or	2.1 White and h	la alcanata	an dianlay < 0.2F	mm no mara than	
02	Black or white	three white and bl			mm, no more than	
	spots on		•	ore than two spot	s or lines within	0.5
	ÖLED	3mm.				2.5
	(display					
03	only) OLED	3.1 Round type	· Ac			
03	black	following drawin		SIZE	Acceptable Q	
	spots,	$\Phi = (x + y) / 2$			TY	
	white	.X . 1		Ф≦0.10	Accept no	
	spots, contamina	→	<u>'</u>	0.10 <	dense 2	2.5
	tion	• -	- Y	0.10 < Φ≦0.20	2	2.0
	(non-displ	Ţ		0.20 <	1	
	ay)		, y	Φ≦0.25		
			,	0.25<Φ	0	
		3.2 Line type : (As following				
			Length	Width	Acceptable Q TY	
		○ /¥w		W≦0.02	Accept no dense	0.5
		→ 1 I←	L≦3.0	0.02 < W \(\le 0.03	2	2.5
			L≦2.5	0.03 <w≤0.05< td=""><td></td><td></td></w≤0.05<>		
				0.05 < W	As round type	
04	Polarizer	1				
	bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction. Size Φ Acceptable Q 1 $\Phi \le 0.20$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \le 0.20 < \Phi \le 0.50$ Accept no density $\Phi \ge 0.20 < \Phi \le 0.50$ Accept no density $\Phi \ge 0.20 < \Phi \le 0.50$ Accept no density $\Phi \ge 0.20 < \Phi \le 0.50$ Accept no density $\Phi \ge 0.20 < \Phi \le 0.20$ Accept no density $\Phi \ge 0.20 < \Phi \le 0.20 < \Phi \le 0.20$ Accept no density $\Phi \ge 0.20 < \Phi \le 0.20 < $			Acceptable Q TY	
	y				•	
						2.5
						0.0
				3		

NO	Item	Criterion	AQL
05	Scratches	Follow NO.3 OLED black spots, white spots, contamination	
		Symbols Define: x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: OLED side length L: Electrode pad length:	
		6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels:	
06	Chipped		2.5
	glass	1/2t < z ≤ 2t Not exceed 1/3k x ≤ 1/8a	
		 ⊙ If there are 2 or more chips, x is total length of each chip. 6.1.2 Corner crack: 	
	4	z: Chip thickness y: Chip width x: Chip length	
		Z≤1/2t Not over viewing x≤1/8a area	20
		1/2t < z ≤ 2t Not exceed 1/3k x ≤ 1/8a	
⊙ If there are 2 or more chips, x is the total length of each chip.			

NO	Item	Criterion	AQL		
		Symbols:			
		x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: OLED side length			
		L: Electrode pad length			
		6.2 Protrusion over terminal :			
		6.2.1 Chip on electrode pad :			
)		
		A Z	9		
		v: Chip width v: Chip longth 7: Chip thickness			
		$\begin{array}{ c c c c c }\hline y: Chip \ width & x: Chip \ length & z: Chip \ thickness \\\hline y \leq 0.5 mm & x \leq 1/8a & 0 < z \leq t \\\hline \end{array}$			
		6.2.2 Non-conductive portion:			
		الماسا أسا			
	Glass				
06	crack	12	2.5		
		X			
		y: Chip width x: Chip length z: Chip			
		thickness			
		$y \le L \qquad x \le 1/8a \qquad 0 < z \le t$			
		⊙ If the chipped area touches the ITO terminal, over 2/3 of the ITO			
		must remain and be inspected according to electrode terminal specifications.			
		If the product will be heat sealed by the customer, the alignment			
		mark not be damaged.)(
	P	6.2.3 Substrate protuberance and internal crack.			
	1	y: width x: length			
1		$y \le 1/3L$ $x \le a$			
		y M			
	,				
			000		
			-00		

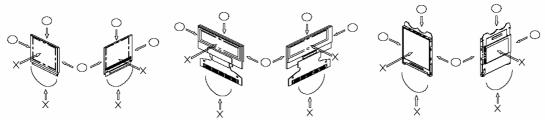
NO	Item	Criterion	AQL
07	Cracked glass	The OLED with extensive crack is not acceptable.	2.5
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using OLED spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
10	PCB、COB	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, OLED pad, zebra pad or screw hold pad, make sure it is smoothed down. 	2.5 2.5 0.65 2.5 2.5 0.65 2.5
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65

NO	Item	Criterion	AQL
NO 12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or 	2.5 0.65 2.5 2.5 2.5 2.5 2.5
		chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet.	0.65 0.65 0.65
		12.9 OLED pin loose or missing pins.12.10 Product packaging must the same as specified on packaging specification sheet.	0.65
		12.11 Product dimension and structure must conform to product specification sheet.	

Check Item	Classification	Criteria
No Display	Major	
Missing Line	Major	
Pixel Short	Major	
Darker Short	Major	
Wrong Display	Major	
Un-uniform B/A x 100% < 70% A/C x 100% < 70%	Major	
		A Normal B Dark Pixel C Light Pixel

11.Precautions in use of OLED Modules

- (1) Avoid applying excessive shocks to module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of OLED display module.
- (3) Don't disassemble the OLED display module.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist OLED display module.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.
- (8) It's pretty common to use "Screen Saver" to extend the lifetime and Don't use fix information for long time in real application.
- (9) Don't use fixed information in OLED panel for long time, that will extend "screen burn" effect time..
- (10) Raystar has the right to change the passive components, including R2and R3 adjust resistors. (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)
- (11) Raystar have the right to change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Raystar have the right to modify the version.)


11.1 Handling Precautions

- (1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.
- (2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- (3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- (4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.
- (5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.
- * Scotch Mending Tape No. 810 or an equivalent

Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent Also, pay attention that the following liquid and solvent may spoil the polarizer:

- * Water
- * Ketone
- * Aromatic Solvents
- (6) Hold OLED display module very carefully when placing OLED display module into the System housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

- (7) Do not apply stress to the LSI chips and the surrounding molded sections.
- (8) Do not disassemble nor modify the OLED display module.
- (9) Do not apply input signals while the logic power is off.
- (10) Pay sufficient attention to the working environments when handing OLED display modules to prevent occurrence of element breakage accidents by static electricity.
- * Be sure to make human body grounding when handling OLED display modules.
- * Be sure to ground tools to use or assembly such as soldering irons.
- * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
- * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.
- (11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OLED display module has been stored surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5.
- (12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

11.2 Storage Precautions

- (1) When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. And, also, avoiding high temperature and high humidity environment or low temperature (less than 0℃) environments.(We recommend you to store these modules in the packaged state when they were shipped from Raystar Optronics Inc. At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
- (2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

11.3 Designing Precautions

- (1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.
- (2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.
- (3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)
- (4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.
- (5) As for EMI, take necessary measures on the equipment side basically.
- (6) When fastening the OLED display module, fasten the external plastic housing section.
- (7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module. Connection (contact) to any other potential than the above may lead to rupture of the IC.

Page: 1

raye. I				
Module Sample Estimate Feedback Sheet				
Module Number:				
1 · Panel Specification :				
1. Panel Type:	□ Pass	□NG ,		
2. Numbers of Pixel:	□ Pass	□NG ,		
3. View Area:	□ Pass	□NG ,		
4. Active Area:	□ Pass	□NG ,		
5.Emitting Color:	□ Pass	□NG ,		
6.Uniformity:	□Pass	□NG ,		
7.Operating	□ Pass	□NG ,		
Temperature :		y y		
8.Storage Temperature:	□ Pass	□NG ,		
9.Others:				
2 · Mechanical Specificati	<u>on</u> :			
1. PCB Size :	□Pass	□NG ,		
2.Frame Size :	□Pass	□NG ,		
3.Materal of Frame:	□Pass	□NG ,		
4.Connector Position:	□Pass	□NG ,		
5.Fix Hole Position:	□Pass	□NG ,		
6. Thickness of PCB:	□Pass	□NG ,		
7. Height of Frame to	□Pass	□NG ,		
PCB:				
8.Height of Module:	□Pass	□NG ,		
9.Others:	□Pass	□NG ,		
3 · Relative Hole Size :				
1.Pitch of Connector:	□Pass	□NG ,		
2.Hole size of □Pass		□NG ,		
Connector:				
3.Mounting Hole size :	□Pass	□NG ,		
4.Mounting Hole Type : □Pass		□NG ,		
5.Others:	□Pass	□NG ,		

>> Go to page 2 <<

		Page: 2			
Module Number:					
4 · Electronic Characteristic	s of Modul	<u>e</u> :			
1.Input Voltage:	□Pass	□NG ,			
2.Supply Current:	□Pass	□NG ,			
3.Driving Voltage for OLED:	□Pass	□NG ,			
4.Contrast for OLED:	□Pass	□NG ,			
5.Negative Voltage	□Pass	□NG ,			
Output:					
6.Interface Function:	□Pass	□NG ,			
7.ESD test:	□Pass	□NG ,			
8.Others:	□Pass	□NG ,			
Sales signature :					
Customer Signature : Date : / /					